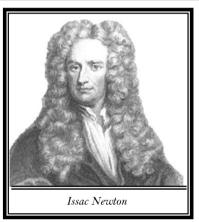
Chapter

| Contents                   |                                                                                  |  |  |  |
|----------------------------|----------------------------------------------------------------------------------|--|--|--|
| 3.1                        | Derivative at a Point                                                            |  |  |  |
|                            | Geometrical meaning of derivative at a point                                     |  |  |  |
|                            | Physical interpretation at a point                                               |  |  |  |
| 3.2                        | Some Standard Differentiation                                                    |  |  |  |
|                            | Differentiation of Algebraic functions                                           |  |  |  |
|                            | Differentiation of trigonometric functions                                       |  |  |  |
|                            | <ul> <li>Differentiation of Logarithmic and Exponential<br/>functions</li> </ul> |  |  |  |
|                            | Differentiation of Inverse circular functions                                    |  |  |  |
|                            | <ul> <li>Differentiation of hyperbolic functions</li> </ul>                      |  |  |  |
|                            | Differentiation by Trigonometrical substitution                                  |  |  |  |
|                            | Some suitable substitution                                                       |  |  |  |
| 3.3                        | Theorems for Differentiation                                                     |  |  |  |
| 3.4                        | Relation between dy/dx and dx/dy                                                 |  |  |  |
| 3.5                        | Methods of Differentiation                                                       |  |  |  |
|                            | Differentiation of Implict functions                                             |  |  |  |
|                            | Logarithmic Differentiation                                                      |  |  |  |
|                            | Differentiation of Parametric functions                                          |  |  |  |
|                            | Differentiation of Infinite Series                                               |  |  |  |
|                            | Differentiation of composite function                                            |  |  |  |
| 3.6                        | Differentiation of a function with respect                                       |  |  |  |
|                            | to another function                                                              |  |  |  |
| 3.7                        | Successive Differentiation or Higher order Derivatives                           |  |  |  |
| 3.8                        | n <sup>th</sup> derivative using Partial Fractions                               |  |  |  |
| 3.9                        | Differentiation of Determinant                                                   |  |  |  |
| 3.10                       | Differentiation of Integral Function                                             |  |  |  |
| 3.11                       | Leibnitz's Theorem                                                               |  |  |  |
|                            | Assignment (Basic and Advance Level)                                             |  |  |  |
| Answer Sheet of Assignment |                                                                                  |  |  |  |



In the history of mathematics two names are prominent to share the credit for inventing calculus, Issac Newton (1642-1727) and G.W. Leibinitz (1646-1717). Both of them independently invented calculus around the seventeenth century. After the advent of calculus many mathematicians contributed for further development of calculus. The rigorous concept is mainly attributed to the great mathematicians, A.L. Cauchy, J.L., Lagrange and Karl Weierstrass.

**B**efore 1900, it was thought that calculus is quite difficult to teach. So calculus became beyond the reach of youngsters. But just in 1900, John Perry and others in England started propagating the view that essential ideas and methods of calculus were simple and could be taught even in schools. F.L. Griffin, pioneered the teaching of calculus to first year students. This was regarded as one of the most daring act in those days.

Today not only the mathematics but many other subjects such as Physics, Chemistry, Economics and Biological Sciences are enjoying the fruits of calculus.





#### Introduction

The rate of change of one quantity with respect to some another quantity has a great importance. For example, the rate of change of displacement of a particle with respect to time is called its velocity and the rate of change of velocity is called its acceleration.

The rate of change of a quantity 'y' with respect to another quantity 'x' is called the derivative or differential coefficient of y with respect to x.

#### 3.1 Derivative at a Point

The derivative of a function at a point x = a is defined by  $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$  (provided the limit exists and is finite)

The above definition of derivative is also called derivative by first principle.

(1) **Geometrical meaning of derivatives at a point:** Consider the curve y = f(x). Let f(x) be differentiable at x = c. Let P(c, f(c)) be a point on the curve and Q(x, f(x)) be a neighbouring point on the curve. Then,

Slope of the chord 
$$PQ = \frac{f(x) - f(c)}{x - c}$$
. Taking limit as  $Q \to P$ , *i.e.*,  $x \to \frac{f(x) - f(c)}{x - c}$  we get  $\lim_{Q \to P} (\text{slope of the chord } PQ) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$  .....(i)  
As  $Q \to P$ , chord PQ becomes tangent at P.  
Therefore from (i), we have  
Slope of the tangent at  $P = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \left(\frac{df(x)}{dx}\right)_{x = c}$ .

**Note** :  $\Box$  Thus, the derivatives of a function at a point x = c is the slope of the tangent to curve, y = f(x) at point (c, f(c)).

(2) **Physical interpretation at a point :** Let a particle moves in a straight line OX starting from O towards X. Clearly, the position of the particle at any instant would depend upon the time elapsed. In other words, the distance of the particle from O will be some function f of time t.



**CLICK HERE** 

Get More Learning Materials Here : 💻

Let at any time  $t = t_0$ , the particle be at *P* and after a further time *h*, it is at *Q* so that  $OP = f(t_0)$  and  $OQ = f(t_0 + h)$ . Hence, the average speed of the particle during the journey from *P* to *Q* is  $\frac{PQ}{h}$ , *i.e.*,  $\frac{f(t_0 + h) - f(t_0)}{h} = f(t_0, h)$ . Taking the limit of  $f(t_0, h)$  as  $h \to 0$ , we get its instantaneous speed to be  $\lim_{h\to 0} \frac{f(t_0 + h) - f(t_0)}{h}$ , which is simply  $f'(t_0)$ . Thus, if f(t) gives the distance of a moving particle at time *t*, then the derivative of *f* at  $t = t_0$  represents the instantaneous speed of the particle at the point *P*, *i.e.*, at time  $t = t_0$ .

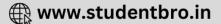
#### Important Tips

 $\overset{\text{\tiny (s)}}{=} \frac{dy}{dx}$  is  $\frac{d}{dx}(y)$  in which  $\frac{d}{dx}$  is simply a symbol of operation and not 'd' divided by dx.

The f'( $x_0$ ) =  $\infty$ , the function is said to have an infinite derivative at the point  $x_0$ . In this case the line tangent to the curve of y = f(x) at the point  $x_0$  is perpendicular to the x-axis

| Example: 1    | If $f(2) = 4$ , $f'(2) = 1$ , then                                                                  | $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} =$                      |                                                                    | [Rajasthan PET 1995, 2000] |  |
|---------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--|
|               | (a) 1                                                                                               | (b) 2                                                               | (c) 3                                                              | (d) - 2                    |  |
| Solution: (b) | Given $f(2) = 4, f'(2) = 1$                                                                         |                                                                     |                                                                    |                            |  |
|               | $\therefore \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} = \lim_{x \to 2} \frac{xg}{x}$               | $\frac{f(2) - 2f(2) + 2f(2) - 2f(x)}{x - 2} = \lim_{x \to 2}$       | $\frac{(x-2)f(2)}{x-2} - \lim_{x \to 2} \frac{2f(x) - 2f(2)}{x-2}$ | <u>()</u>                  |  |
|               | $= f(2) - 2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f(2) - 2f'(2) = 4 - 2(1) = 4 - 2 = 2$        |                                                                     |                                                                    |                            |  |
|               | <b>Trick :</b> Applying L-Hospital rule, we get $\lim_{x\to 2} \frac{f(2) - 2f'(2)}{1} = 2$ .       |                                                                     |                                                                    |                            |  |
| Example: 2    | If $f(x + y) = f(x) \cdot f(y)$ for all x and y and $f(5) = 2$ , $f'(0) = 3$ , then $f'(5)$ will be |                                                                     |                                                                    |                            |  |
|               |                                                                                                     | [IIT 1981; Karnatak                                                 | a CET 2000; UPSEAT 2002                                            | ; MP PET 2002; AIEEE 2002] |  |
|               | (a) 2                                                                                               | (b) 4                                                               | (c) 6                                                              | (d) 8                      |  |
| Solution: (c) | Let $x = 5, y = 0 \implies f(5+0) = f(5).f(0)$                                                      |                                                                     |                                                                    |                            |  |
|               | $\Rightarrow f(5) = f(5)f(0) \Rightarrow f(0) = 1$                                                  |                                                                     |                                                                    |                            |  |
|               | Therefore, $f'(5) = \lim_{h \to 0} \frac{f(5)}{f(5)}$                                               | $\frac{(h+h) - f(5)}{h} = \lim_{h \to 0} \frac{f(5)f(h) - f(5)}{h}$ | $=\lim_{h\to 0} 2\left[\frac{f(h)-1}{h}\right]$                    | $\{:: f(5) = 2\}$          |  |
|               | = $2 \lim_{h \to 0} \left[ \frac{f(h) - f(0)}{h} \right] = 2 \times f'(0) = 2 \times 3 = 6$ .       |                                                                     |                                                                    |                            |  |
| Example: 3    | If $f(a) = 3$ , $f'(a) = -2$ , $g(a) = -2$                                                          | $-1, g'(a) = 4$ , then $\lim_{x \to a} \frac{g(x)f(a)}{x}$          | $\frac{-g(a)f(x)}{-a} =$                                           | [MP PET 1997]              |  |
|               | (a) – 5                                                                                             | (b) 10                                                              | (c) - 10                                                           | (d) 5                      |  |

Get More Learning Materials Here :



 $\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$ . We add and subtract g(a)f(a) in numerator Solution: (b)  $= \lim_{x \to a} \frac{g(x)f(a) - g(a)f(a) + g(a)f(a) - g(a)f(x)}{x - a} = \lim_{x \to a} f(a) \left[ \frac{g(x) - g(a)}{x - a} \right] - \lim_{x \to a} g(a) \left[ \frac{f(x) - f(a)}{x - a} \right]$  $= f(a) \lim_{x \to a} \left[ \frac{g(x) - g(a)}{x - a} \right] - g(a) \lim_{x \to a} \left[ \frac{f(x) - f(a)}{x - a} \right] = f(a)g'(a) - g(a)f'(a)$  [by using first principle formula] = 3.4 - (-1)(-2) = 12 - 2 = 10**Trick :**  $\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$ Using L-Hospital's rule, Limit =  $\lim_{x \to a} \frac{g'(x)f(a) - g(a)f'(x)}{1}$ ; Limit = g'(a) f(a) - g(a)f'(a) = (4)(3) - (-1)(-2) = 12 - 2 = 10. If  $5f(x) + 3f\left(\frac{1}{x}\right) = x + 2$  and y = xf(x) then  $\left(\frac{dy}{dx}\right)_{x=1}$  is equal to Example: 4 (b)  $\frac{1}{2}$ (a) 14 (d) None of these (c) 1 **Solution:** (b) ::  $5f(x) + 3f\left(\frac{1}{x}\right) = x + 2$ Replacing x by  $\frac{1}{r}$  in (i),  $5f(\frac{1}{r}) + 3f(x) = \frac{1}{r} + 2$ .....(ii) On solving equation (i) and (ii), we get,  $16f(x) = 5x - \frac{3}{x} + 4$ ,  $\therefore 16f'(x) = 5 + \frac{3}{x^2}$ :  $y = xf(x) \Rightarrow \frac{dy}{dx} = f(x) + xf'(x) = \frac{1}{16}(5x - \frac{3}{x} + 4) + x \cdot \frac{1}{16}(5 + \frac{3}{x^2})$ at x = 1,  $\frac{dy}{dx} = \frac{1}{16}(5-3+4) + \frac{1}{16}(5+3) = \frac{7}{8}$ .

#### 3.2 Some Standard Differentiation

#### (1) Differentiation of algebraic functions

(i) 
$$\frac{d}{dx}x^n = nx^{n-1}, x \in R, n \in R, x > 0$$
 (ii)  $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$  (iii)  $\frac{d}{dx}\left(\frac{1}{x^n}\right) = -\frac{n}{x^{n+1}}$ 

(2) **Differentiation of trigonometric functions :** The following formulae can be applied directly while differentiating trigonometric functions

(i) 
$$\frac{d}{dx}\sin x = \cos x$$
  
(ii)  $\frac{d}{dx}\cos x = -\sin x$   
(iii)  $\frac{d}{dx}\tan x = \sec^2 x$   
(iv)  $\frac{d}{dx}\sec x = \sec x \tan x$   
(v)  $\frac{d}{dx}\csc x = -\csc x \cot x$   
(vi)  $\frac{d}{dx}\cot x = -\csc^2 x$ 

(3) **Differentiation of logarithmic and exponential functions :** The following formulae can be applied directly when differentiating logarithmic and exponential functions

(i) 
$$\frac{d}{dx}\log x = \frac{1}{x}$$
, for  $x > 0$  (ii)  $\frac{d}{dx}e^x = e^x$ 

Get More Learning Materials Here :

🕀 www.studentbro.in

(iii) 
$$\frac{d}{dx}a^x = a^x \log a$$
, for  $a > 0$  (iv)  $\frac{d}{dx}\log_a x = \frac{1}{x\log a}$ , for  $x > 0$ ,  $a > 0$ ,  $a \neq 1$ 

(4) **Differentiation of inverse trigonometrical functions :** The following formulae can be applied directly while differentiating inverse trigonometrical functions

(i) 
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
, for  $-1 < x < 1$   
(ii)  $\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$ , for  $-1 < x < 1$   
(iii)  $\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2-1}}$ , for  $|x| > 1$   
(iv)  $\frac{d}{dx}\csc^{-1}x = \frac{-1}{|x|\sqrt{x^2-1}}$ , for  $|x| > 1$ 

|x| > 1

(v) 
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$
, for  $x \in R$  (vi)  $\frac{d}{dx} \cot^{-1} x = \frac{-1}{1+x^2}$ , for  $x \in R$ 

(5) Differentiation of hyperbolic functions :

(i) 
$$\frac{d}{dx} \sin h x = \cos h x$$
  
(ii)  $\frac{d}{dx} \cos h x = \sin h x$   
(iii)  $\frac{d}{dx} \cos h x = \sin h x$   
(iv)  $\frac{d}{dx} \cosh h x = \operatorname{sec} h^2 x$   
(v)  $\frac{d}{dx} \sec h x = -\sec h x \tan h x$   
(vi)  $\frac{d}{dx} \operatorname{cose} h x = -\operatorname{cose} h x \cot h x$   
(vii)  $\frac{d}{dx} \sin h^{-1} x = 1 / \sqrt{(1 + x^2)}$   
(viii)  $\frac{d}{dx} \cos h^{-1} x = 1 / \sqrt{(x^2 - 1)}$   
(ix)  $\frac{d}{dx} \tan h^{-1} x = 1 / (x^2 - 1)$   
(x)  $\frac{d}{dx} \operatorname{cos} h^{-1} x = 1 / (1 - x^2)$   
(xi)  $\frac{d}{dx} \sec h^{-1} x = -1 / x \sqrt{(1 - x^2)}$   
(xii)  $\frac{d}{dx} \operatorname{cose} h^{-1} x = -1 / x \sqrt{(1 + x^2)}$ 

(6) **Differentiation by inverse trigonometrical substitution:** For trigonometrical substitutions following formulae and substitution should be remembered

(i) 
$$\sin^{-1} x + \cos^{-1} x = \pi/2$$
  
(ii)  $\tan^{-1} x + \cot^{-1} x = \pi/2$   
(iii)  $\tan^{-1} x + \cot^{-1} x = \pi/2$   
(iv)  $\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} \left[ x \sqrt{1 - y^2} \pm y \sqrt{1 - x^2} \right]$   
(v)  $\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left[ xy \mp \sqrt{(1 - x^2)(1 - y^2)} \right]$  (vi)  $\tan^{-1} x \pm \tan^{-1} y = \tan^{-1} \left[ \frac{x \pm y}{1 \mp xy} \right]$   
(vi)  $2\sin^{-1} x = \sin^{-1}(2x\sqrt{1 - x^2})$   
(vii)  $2\cos^{-1} x = \cos^{-1}(2x^2 - 1)$   
(ix)  $2\tan^{-1} x = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) = \sin^{-1} \left( \frac{2x}{1 + x^2} \right) = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)$   
(x)  $3\sin^{-1} x = \sin^{-1}(3x - 4x^3)$   
(xi)  $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x)$   
(xii)  $3\tan^{-1} x = \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right)$   
(xiii)  $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left( \frac{x + y + z - xyz}{1 - xy - yz - zx} \right)$ 

CLICK HERE

≫

Get More Learning Materials Here : 📕

(xiv) 
$$\sin^{-1}(-x) = -\sin^{-1} x$$
  
(xv)  $\cos^{-1}(-x) = \pi - \cos^{-1} x$   
(xvi)  $\tan^{-1}(-x) = -\tan^{-1} x$  or  $\pi - \tan^{-1} x$   
(xvii)  $\frac{\pi}{4} - \tan^{-1} x = \tan^{-1} \left(\frac{1-x}{1+x}\right)$ 

#### (7) Some suitable substitutions

| <b>S.</b> N. | Function                             | Substitution                                  | S. N.  | Function                 | Substitution                                  |
|--------------|--------------------------------------|-----------------------------------------------|--------|--------------------------|-----------------------------------------------|
| (i)          | $\sqrt{a^2 - x^2}$                   | $x = a\sin\theta$ or $a\cos\theta$            | (ii)   | $\sqrt{x^2 + a^2}$       | $x = a \tan \theta \text{ or } a \cot \theta$ |
| (iii)        | $\sqrt{x^2-a^2}$                     | $x = a \sec \theta \text{ or } a \csc \theta$ | (iv)   | $\sqrt{\frac{a-x}{a+x}}$ | $x = a\cos 2\theta$                           |
| (v)          | $\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}$ | $x^2 = a^2 \cos 2\theta$                      | (vi)   | $\sqrt{ax-x^2}$          | $x = a\sin^2\theta$                           |
| (vii)        | $\sqrt{\frac{x}{a+x}}$               | $x = a \tan^2 \theta$                         | (viii) | $\sqrt{\frac{x}{a-x}}$   | $x = a\sin^2\theta$                           |
| (ix)         | $\sqrt{(x-a)(x-b)}$                  | $x = a \sec^2 \theta - b \tan^2 \theta$       | (x)    | $\sqrt{(x-a)(b-x)}$      | $x = a\cos^2\theta + b\sin^2\theta$           |

#### **3.3 Theorems for Differentiation**

Let f(x), g(x) and u(x) be differentiable functions

(1) If at all points of a certain interval. f'(x) = 0, then the function f(x) has a constant value within this interval.

#### (2) Chain rule

(i) **Case I**: If *y* is a function of *u* and *u* is a function of *x*, then derivative of *y* with respect to *x* is  $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$  or  $y = f(u) \Rightarrow \frac{dy}{dx} = f'(u)\frac{du}{dx}$ 

(ii) **Case II :** If *y* and *x* both are expressed in terms of *t*, *y* and *x* both are differentiable with respect to *t* then  $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ .

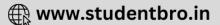
(3) Sum and difference rule : Using linear property  $\frac{d}{dx}(f(x)\pm g(x)) = \frac{d}{dx}(f(x))\pm \frac{d}{dx}(g(x))$ (4) Product rule : (i)  $\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$  (ii)  $\frac{d}{dx}(u.v.w.) = u.v.\frac{dw}{dx} + v.w.\frac{du}{dx} + u.w.\frac{dv}{dx}$ (5) Scalar multiple rule :  $\frac{d}{dx}(kf(x)) = k\frac{d}{dx}f(x)$ (6) Quotient rule :  $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{d}{dx}(f(x)) - f(x)\frac{d}{dx}(g(x))}{(g(x))^2}$ , provided  $g(x) \neq 0$ 

**Example: 5** The derivative of  $f(x) = |x|^3$  at x = 0 is (a) 0 (b) 1 [Rajasthan PET 2001; Haryana CEE 2002]

(d) Not defined



(c) -1



r www.studentbro.in

| Solution: (a)                                | $f(x) = \begin{cases} x^3 & , x \ge 0 \\ -x^3 & , x < 0 \end{cases} \text{ and } f'(x) = \begin{cases} 3x^2 & , x \ge 0 \\ -3x^2 & , x < 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|--|
|                                              | $f'(0^+) = f'(0^-) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
| Example: 6                                   | The first derivative of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he function ( $\sin 2x \cos 2x \cos x$                                                                                                                                                                                                                                                                                                                 | $3x + \log_2 2^{x+3}$ ) with respe                                                             | ect to x at $x = \pi$ is               |  |
|                                              | (a) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) -1                                                                                                                                                                                                                                                                                                                                                 | (c) $-2+2^{\pi}\log_e 2$                                                                       | (d) $-2 + \log_e 2$                    |  |
| Solution: (b)                                | $f(x) = \sin 2x \cdot \cos 2x \cdot \cos 3x + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $+\log_2 2^{x+3}$ , $f(x) = \frac{1}{2}\sin 4x \cos 3$                                                                                                                                                                                                                                                                                                 | $3x + (x+3)\log_2 2$ , $f(x) = \frac{1}{4}$                                                    | $[\sin 7x + \sin x] + x + 3$           |  |
|                                              | Differentiate w.r.t. x,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
|                                              | $f'(x) = \frac{1}{4} [7\cos 7x + \cos x] + \frac{1}{4} [7\cos 7x + \cos x$                                                        | 1, $f'(x) = \frac{1}{4}7\cos 7x + \frac{1}{4}\cos x + \frac{1}{4}\cos x$                                                                                                                                                                                                                                                                               | 1, $f'(\pi) = -2 + 1 = -1$ .                                                                   |                                        |  |
| Example: 7                                   | If $y =  \cos x  +  \sin x $ the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
|                                              | (a) $\frac{1-\sqrt{3}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) o                                                                                                                                                                                                                                                                                                                                                  | (c) $\frac{1}{2}(\sqrt{3}-1)$                                                                  | (d) None of these                      |  |
| Solution: (c)                                | Around $x = \frac{2\pi}{3}$ , $ \cos x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=-\cos x$ and $ \sin x  = \sin x$                                                                                                                                                                                                                                                                                                                     | x                                                                                              |                                        |  |
|                                              | $\therefore y = -\cos x + \sin x  \therefore  \frac{dy}{dx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{y}{x} = \sin x + \cos x$                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
|                                              | At $x = \frac{2\pi}{3}$ , $\frac{dy}{dx} = \sin\frac{2\pi}{3} + \frac{2\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\cos\frac{2\pi}{3} = \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{1}{2}(\sqrt{3} - 1)$                                                                                                                                                                                                                                                                    |                                                                                                |                                        |  |
| Example: 8                                   | If $f(x) = \log_x(\log x)$ , then $f'(x)$ at $x = e$ is [IIT 1985; Rajasthan PET 2000; MP PET 2000; Karnataka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
| CET AGAAI                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                        |  |
| CET 2002]                                    | (a) <i>e</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) 1/ <i>e</i>                                                                                                                                                                                                                                                                                                                                        | (c) 1                                                                                          | (d) None of these                      |  |
| _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $1/e$<br>$\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x} \log(\log x)}{(\log x)^2} =$                                                                                                                                                                                                                                             |                                                                                                | (d) None of these                      |  |
| _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x} \log(\log x)}{(\log x)^2} =$                                                                                                                                                                                                                                                          |                                                                                                | (d) None of these                      |  |
| <b>Solution:</b> (b)                         | $f(x) = \log_x (\log x) = \frac{\log(\log x)}{\log x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x} \log(\log x)}{(\log x)^2} =$                                                                                                                                                                                                                                                          |                                                                                                | (d) None of these<br>(d) None of these |  |
| <b>Solution:</b> (b)                         | $f(x) = \log_{x} (\log x) = \frac{\log(\log x)}{\log x}$<br>If $f(x) \neq \log x$ , then for<br>(a) $\frac{1}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^2} = x \neq 1, f'(x) \text{ equals}$                                                                                                                                                                                                                            | $\Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}$ (c) $\frac{-1}{x}$               |                                        |  |
| Solution: (b)<br>Example: 9                  | $f(x) = \log_{x} (\log x) = \frac{\log(\log x)}{\log x}$<br>If $f(x) \neq \log x$ , then for<br>(a) $\frac{1}{x}$ $f(x) \neq \log x = \begin{cases} -\log x, & \text{if } 0 \\ \log x, & \text{if } 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^2} = x \neq 1, f'(x) \text{ equals}$ (b) $\frac{1}{ x }$                                                                                                                                                                                                        | $\Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}$ (c) $\frac{-1}{x}$ < $x < 1$ > 1 |                                        |  |
| Solution: (b)<br>Example: 9                  | $f(x) = \log_{x} (\log x) = \frac{\log(\log x)}{\log x}$<br>If $f(x) \neq \log x$ , then for<br>(a) $\frac{1}{x}$ $f(x) \neq \log x = \begin{cases} -\log x, & \text{if } 0 \\ \log x, & \text{if } 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^2} =$ $x \neq 1, f'(x) \text{ equals}$ $(b) \frac{1}{ x }$ $\int_{\text{if } x \ge 1} \Rightarrow f'(x) = \begin{cases} -\frac{1}{x}, & \text{if } 0 \\ \frac{1}{x}, & \text{if } x \end{cases}$ $f'(1^+) = 1,  \therefore  f'(x) \text{ does not explanation}$ | $\Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}$ (c) $\frac{-1}{x}$ < $x < 1$ > 1 |                                        |  |
| Solution: (b)<br>Example: 9<br>Solution: (d) | $f(x) = \log_{x} (\log x) = \frac{\log(\log x)}{\log x}$<br>If $f(x) \neq \log x $ , then for<br>(a) $\frac{1}{x}$<br>$f(x) \neq \log x  = \begin{cases} -\log x, & \text{if } (\log x), & if $ | $\frac{x}{x} \Rightarrow f'(x) = \frac{\frac{1}{x} - \frac{1}{x}\log(\log x)}{(\log x)^2} =$ $x \neq 1, f'(x) \text{ equals}$ $(b) \frac{1}{ x }$ $\int_{\text{if } x \ge 1} \Rightarrow f'(x) = \begin{cases} -\frac{1}{x}, & \text{if } 0 \\ \frac{1}{x}, & \text{if } x \end{cases}$ $f'(1^+) = 1,  \therefore  f'(x) \text{ does not explanation}$ | $\Rightarrow f'(e) = \frac{\frac{1}{e} - 0}{1} = \frac{1}{e}$ (c) $\frac{-1}{x}$ < $x < 1$ > 1 |                                        |  |

Get More Learning Materials Here : 💻



Solution: (c) Let 
$$y = \left[ \log \left\{ x^{2} \left\{ \frac{x-2}{x+2} \right\}^{1/x} \right\} \right] - \log x^{2} + \log \left\{ \frac{x-2}{x+2} \right\}^{1/x}$$
  
 $\Rightarrow y = x + \frac{3}{4} \left[ \log (x-2) - \log (x+2) \right] \Rightarrow \frac{dx}{dx} = 1 + \frac{3}{4} \left[ \frac{1}{x-2} - \frac{1}{x+2} \right] = 1 + \frac{3}{(x^{2}-4)}$   
 $\Rightarrow \frac{dy}{dx} = \frac{x^{2}-1}{x^{2}-4}$ .  
Example: 11 If  $x = \exp \left[ \tan^{-1} \left\{ \frac{y-x^{2}}{x^{2}} \right\} \right]$  then  $\frac{dy}{dx}$  equals [MP PET 2002]  
(a)  $2x [1 + \tan (\log x)] + x \sec^{2} (\log x)$  (b)  $x [1 + \tan (\log x)] + \sec^{2} (\log x)$   
(c)  $2x [1 + \tan (\log x)] + x \sec^{2} (\log x)$  (d)  $2x [1 + \tan (\log x)] + \sec^{2} (\log x)$   
Solution: (a)  $x = \exp \left[ \tan^{-1} \left( \frac{y-x^{2}}{x^{2}} \right) \right] \Rightarrow \log x = \tan^{-1} \left( \frac{y-x^{2}}{x^{3}} \right)$   
 $\Rightarrow \frac{y-x^{2}}{x^{2}} = \tanh(\log x) + x \sec^{2} (\log x) + 2x \Rightarrow \frac{dy}{dx} = 2x . \text{ Let}(\log x) + x^{2} . \frac{\sec^{2} (\log x)}{x} + 2x + 2x + 2x + \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \tan(\log x)) + x \sec^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{dy}{dx} = \frac{dy}{dx} = 2x (1 + \cos^{2} (\log x) + 2x - \frac{d$ 

Get More Learning Materials Here : 💻

# r www.studentbro.in

🕀 www.studentbro.in

 $\therefore \frac{dy}{dx} = \frac{1}{2}$ If  $y = \cos^{-1}\left(\frac{5\cos x - 12\sin x}{13}\right)$ ,  $x \in \left(0, \frac{\pi}{2}\right)$ , then  $\frac{dy}{dx}$  is equal to Example: 15 (a) 1 (d) None of these **Solution:** (a) Let  $\cos \alpha = \frac{5}{13}$ . Then  $\sin \alpha = \frac{12}{13}$ . So,  $y = \cos^{-1} \{\cos \alpha . \cos x - \sin \alpha . \sin x\}$ :  $y = \cos^{-1} \{ \cos(x + \alpha) \} = x + \alpha$  (:  $x + \alpha$  is in the first or the second quadrant)  $\therefore \frac{dy}{dt} = 1$ . **Example: 16**  $\frac{d}{dx} \cosh^{-1}(\sec x) =$ [Rajasthan PET 1997] (a)  $\sec x$ (b)  $\sin x$ (c) tan x (d) cosec x**Solution:** (a) We know that  $\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$ ,  $\frac{d}{dx} \cosh^{-1} (\sec x) = \frac{1}{\sqrt{\sec^2 x - 1}} \sec x \tan x = \frac{\sec x \tan x}{\tan x} = \sec x$ . **Example: 17**  $\frac{d}{dx} \left[ \left( \frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} \right) \cot 3x \right]$ [AMU 2000] (c)  $\sec^2 x$ (a)  $\tan 2x \tan x$ (b)  $\tan 3x \tan x$ (d)  $\sec x \tan x$ Solution: (c) Let  $y = \frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \frac{(\tan 2x - \tan x)}{(1 + \tan 2x \tan x)} \frac{(\tan 2x + \tan x)}{(1 - \tan 2x \tan x)} = \tan(2x - x)\tan(2x + x) = \tan x \tan 3x$ .  $\therefore \frac{d}{dx}[y. \cot 3x] = \frac{d}{dx}[\tan x] = \sec^2 x \,.$ **Example: 18** If  $f(x) = \cot^{-1}\left(\frac{x^x - x^{-x}}{2}\right)$ , then f'(1) is equal to [Rajasthan PET 2000] (a) - 1 (d)  $-\log 2$ (b) 1 (c) log 2 **Solution:** (a)  $f(x) = \cot^{-1}\left(\frac{x^{x} - x^{-x}}{2}\right)$ Put  $x^x = \tan \theta$ ,  $\therefore y = f(x) = \cot^{-1}\left(\frac{\tan^2 \theta - 1}{2 \tan \theta}\right) = \cot^{-1}(-\cot 2\theta) = \pi - \cot^{-1}(\cot 2\theta)$  $\Rightarrow y = \pi - 2\theta = \pi - 2\tan^{-1}(x^x) \Rightarrow \frac{dy}{dx} = \frac{-2}{1 + x^{2x}} \cdot x^x (1 + \log x) \Rightarrow f'(1) = -1.$ **Example: 19** If  $y = (1+x)(1+x^2)(1+x^4)...(1+x^{2^n})$  then  $\frac{dy}{dx}$  at x = 0 is (b) - 1 (a) 1 (c) 0 (d) None of these **Solution:** (a)  $y = \frac{(1-x)(1+x)(1+x^2)\dots(1+x^{2^n})}{1-x} = \frac{1-x^{2^{n+1}}}{1-x}$  $\therefore \frac{dy}{dx} = \frac{-2^{n+1} \cdot x^{2^{n+1}-1} (1-x) + 1 - x^{2^{n+1}}}{(1-x)^2}, \quad \therefore \text{ At } x = 0, \quad \frac{dy}{dx} = \frac{-2^{n+1} \cdot 0 \cdot 1 + 1 - 0}{1^2} = 1.$ **Example: 20** If  $f(x) = \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x$  then  $f'\left(\frac{\pi}{4}\right)$  is

CLICK HERE

Get More Learning Materials Here :

(a) 
$$\sqrt{2}$$
 (b)  $\frac{1}{\sqrt{2}}$  (c) 1 (d) None of these  
**Solution:** (a)  $f(x) = \frac{2 \sin x \cdot \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x}{2 \sin x} = \frac{\sin 32x}{2^5 \sin x}$   
 $\therefore f'(x) = \frac{1}{32} \cdot \frac{32 \cos 32x \cdot \sin x - \cos x \cdot \sin 32x}{\sin^2 x}$   
 $\therefore f'(\frac{\pi}{4}) = \frac{32 \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \cdot 0}{32 \cdot (\frac{1}{\sqrt{2}})^2} = \sqrt{2}$ .

#### 3.4 Relation between dy/dx and dx/dy

Let *x* and *y* be two variables connected by a relation of the form f(x, y) = 0. Let  $\Delta x$  be a small change in *x* and let  $\Delta y$  be the corresponding change in *y*. Then  $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$  and  $\frac{dx}{dy} = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}$ .

Now, 
$$\frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta y} = 1 \Rightarrow \lim_{\Delta x \to 0} \left( \frac{\Delta y}{\Delta x} \cdot \frac{\Delta x}{\Delta y} \right) = 1$$
  

$$\Rightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = 1 \quad [\because \Delta x \to 0 \Leftrightarrow \Delta y \to 0 \ ] \Rightarrow \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \quad \text{So, } \frac{dy}{dx} = \frac{1}{dx/dy} \,.$$

#### 3.5 Methods of Differentiation

(1) **Differentiation of implicit functions :** If *y* is expressed entirely in terms of *x*, then we say that *y* is an explicit function of *x*. For example  $y = \sin x$ ,  $y = e^x$ ,  $y = x^2 + x + 1$  etc. If *y* is related to *x* but can not be conveniently expressed in the form of y = f(x) but can be expressed in the form f(x, y) = 0, then we say that *y* is an implicit function of *x*.

(i) Working rule 1 : (a) Differentiate each term of f(x, y) = 0 with respect to x.

(b) Collect the terms containing dy / dx on one side and the terms not involving dy/dx on the other side.

(c) Express dy/dx as a function of x or y or both.

**Note** :  $\Box$  In case of implicit differentiation, dy/dx may contain both x and y.

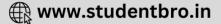
(ii) Working rule 2 : If 
$$f(x, y)$$
 = constant, then  $\frac{dy}{dx} = -\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$ 

where  $\frac{\partial f}{\partial x}$  and  $\frac{\partial f}{\partial x}$  are partial differential coefficients of f(x,y) with respect to x and y

respectively.

Get More Learning Materials Here : 💵 👘





*Wole* :  $\Box$  Partial differential coefficient of f(x, y) with respect to x means the ordinary differential coefficient of f(x, y) with respect to x keeping y constant.

**Example: 21** If  $xe^{xy} = y + \sin^2 x$ , then at x = 0,  $\frac{dy}{dx} = \frac{dy}{dx}$ [IIT 1996] (b) - 2 (a) - 1 (c) 1 (d) 2 **Solution:** (c) We are given that  $xe^{xy} = y + \sin^2 x$ When x = 0, we get y = 0Differentiating both sides w.r.t. x, we get,  $e^{xy} + xe^{xy} \left[ x \frac{dy}{dx} + y \right] = \frac{dy}{dx} + 2 \sin x \cos x$ Putting, x = 0, y = 0, we get  $\frac{dy}{dx} = 1$ . If sin(x+y) = log(x+y), then  $\frac{dy}{dx} =$ Example: 22 [Karnataka CET 1993; Rajasthan PET 1989, 1992; Roorkee 2000] (b) - 2 (d) - 1 (a) 2 (c) 1 **Solution:** (d) sin(x + y) = log(x + y)Differentiating with respect to x,  $\cos(x+y)\left[1+\frac{dy}{dx}\right] = \frac{1}{x+y}\left[1+\frac{dy}{dx}\right]$  $\left[\cos(x+y) - \frac{1}{x+y}\right] \left[1 + \frac{dy}{dx}\right] = 0$  $\therefore$   $\cos(x+y) \neq \frac{1}{x+y}$  for any x and y. So,  $1 + \frac{dy}{dx} = 0$ ,  $\frac{dy}{dx} = -1$ . **Trick:** It is an implicit function, so  $\frac{dy}{dx} = -\frac{\partial f / \partial x}{\partial f / \partial y} = -\frac{\cos(x+y) - \frac{1}{x+y}}{\cos(x+y) - \frac{1}{x+y}} = -1$ . **Example: 23** If  $\ln(x + y) = 2xy$ , then y'(0) =[IIT Screening 2004] (a) 1 (d) 0  $\ln(x+y) = 2xy \implies \frac{(1+dy/dx)}{(x+y)} = 2\left(x\frac{dy}{dx} + y\right) \implies \frac{dy}{dx} = \frac{1-2xy-2y^2}{2x^2+2xy-1} \implies y'(0) = \frac{1-2}{-1} = 1 \text{, at } x = 0, y = 1.$ Solution: (a) (2) Logarithmic differentiation : If differentiation of an expression or an equation is done after taking log on both sides, then it is called logarithmic differentiation. This method is useful for the function having following forms.

(i) 
$$y = [f(x)]^{g(x)}$$

(ii)  $y = \frac{f_1(x).f_2(x)...}{g_1(x).g_2(x)...}$  where  $g_i(x) \neq 0$  (where i = 1, 2, 3,...),  $f_i(x)$  and  $g_i(x)$  both are

differentiable

(i) **Case I** :  $y = [f(x)]^{g(x)}$  where f(x) and g(x) are functions of x. To find the derivative of this type of functions we proceed as follows:

CLICK HERE

( >>

Get More Learning Materials Here :

🕀 www.studentbro.in

Let  $y = [f(x)]^{g(x)}$ . Taking logarithm of both the sides, we have  $\log y = g(x) \log f(x)$ Differentiating with respect to x, we get  $\frac{1}{y}\frac{dy}{dx} = g(x) \cdot \frac{1}{f(x)}\frac{df(x)}{dx} + \log \{f(x)\} \cdot \frac{dg(x)}{dx}$  $\therefore \frac{dy}{dx} = y \left[ \frac{g(x)}{f(x)} \cdot \frac{df(x)}{dx} + \log[f(x)] \cdot \frac{dg(x)}{dx} \right] = [f(x)^{g(x)} \left[ \frac{g(x)}{f(x)} \frac{df(x)}{dx} + \log[f(x) \frac{dg(x)}{dx} \right]$ (ii) **Case II** :  $y = \frac{f_1(x).f_2(x)}{g_1(x).g_2(x)}$ Taking logarithm of both the sides, we have  $\log y = \log[f_1(x)] + \log[f_2(x)] - \log[g_1(x)] - \log[g_2(x)]$ Differentiating with respect to x, we get  $\frac{1}{v}\frac{dy}{dx} = \frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} - \frac{g_1'(x)}{g_2(x)} - \frac{g_2'(x)}{g_2(x)}$  $\frac{dy}{dx} = y \left[ \frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} - \frac{g_1'(x)}{g_1(x)} - \frac{g_2'(x)}{g_2(x)} \right] = \frac{f_1(x) \cdot f_2(x)}{g_1(x) \cdot g_2(x)} \left[ \frac{f_1'(x)}{f_1(x)} + \frac{f_2'(x)}{f_2(x)} - \frac{g_1'(x)}{g_1(x)} - \frac{g_2'(x)}{g_2(x)} \right]$ Working rule : (a) To take logarithm of the function (b) To differentiate the function **Example: 24** If  $x^m y^n = 2(x+y)^{m+n}$ , the value of  $\frac{dy}{dx}$  is [MP PET 2003] (b)  $\frac{x}{v}$ (c)  $\frac{y}{-}$ (a) x + y(d) x - y**Solution:** (c)  $x^m y^n = 2(x+y)^{m+n} \implies m \log x + n \log y = \log 2 + (m+n) \log(x+y)$ Differentiating *w.r.t. x* both sides  $\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{m+n}{x+y}\left[1 + \frac{dy}{dx}\right] \Rightarrow \frac{dy}{dx} = \frac{y}{x}.$ **Example: 25** If  $y = (\sin x)^{\tan x}$ , then  $\frac{dy}{dx}$  is equal to [IIT 1994; Rajasthan PET 1996] (a)  $(\sin x)^{\tan x} . (1 + \sec^2 x . \log \sin x)$ (b)  $\tan x . (\sin x)^{\tan x - 1} . \cos x$ (c)  $(\sin x)^{\tan x}$ ,  $\sec^2 x \log \sin x$ (d)  $\tan x . (\sin x)^{\tan x - 1}$ Solution: (a) Given  $y = (\sin x)^{\tan x}$  $\log y = \tan x \cdot \log \sin x$ Differentiating w.r.t. x,  $\frac{1}{y} \cdot \frac{dy}{dx} = \tan x \cdot \cot x + \log \sin x \cdot \sec^2 x$  $\frac{dy}{dx} = (\sin x)^{\tan x} [1 + \log \sin x \cdot \sec^2 x].$ 

(3) **Differentiation of parametric functions :** Sometimes *x* and *y* are given as functions of a single variable, *e.g.*,  $x = \phi(t)$ ,  $y = \psi(t)$  are two functions and *t* is a variable. In such a case *x* and *y* are called parametric functions or parametric equations and *t* is called the parameter. To find  $\frac{dy}{dx}$  in case of parametric functions, we first obtain the relationship between *x* and *y* by eliminating the parameter *t* and then we differentiate it with respect to *x*. But every time it is

CLICK HERE

( >>

🕀 www.studentbro.in

not convenient to eliminate the parameter. Therefore  $\frac{dy}{dx}$  can also be obtained by the following

formula 
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

To prove it, let  $\Delta x$  and  $\Delta y$  be the changes in x and y respectively corresponding to a small change  $\Delta t$  in t.

Since 
$$\frac{\Delta y}{\Delta x} = \frac{\Delta y / \Delta t}{\Delta x / \Delta t}$$
,  $\therefore \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}}{\lim_{\Delta x \to 0} \frac{dx}{\Delta t}} = \frac{\frac{dy}{dt}}{dt} = \frac{\Psi'(t)}{\theta'(t)}$   
Example: 26 If  $x = a(\cos \theta + \theta \sin \theta)$ ,  $y = a(\sin \theta - \theta \cos \theta)$ ,  $\frac{dy}{dx} =$  [DCE 1999]  
(a)  $\cos \theta$  (b)  $\tan \theta$  (c)  $\sec \theta$  (d)  $\csc \theta$  (d)  $\csc \theta$   
Solution: (b)  $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{d(\cos \theta - \theta(-\sin \theta) - \cos \theta)}{d(-\sin \theta + \theta \cos \theta + \sin \theta)} = \frac{\theta \sin \theta}{\theta \cos \theta} = \tan \theta$ .  
Example: 27 If  $\cos x = \frac{1}{\sqrt{1+t^2}}$  and  $\sin y = \frac{t}{\sqrt{1+t^2}}$ , then  $\frac{dy}{dx} =$  [MP PET 1994]  
(a)  $-1$  (b)  $\frac{1-t}{1+t^2}$  (c)  $\frac{1}{1+t^2}$  (d) 1  
Solution: (d) Obviously  $x = \cos^{-1} \frac{1}{\sqrt{1+t^2}}$  and  $y = \sin^{-1} \frac{t}{\sqrt{1+t^2}}$   
 $\Rightarrow x = \tan^{-1} t$  and  $y = \tan^{-1} t \Rightarrow y = x \Rightarrow \frac{dy}{dx} = 1$ .  
Example: 28 If  $x = \frac{1-t^2}{1+t^2}$  and  $y = \frac{2t}{1+t^2}$ , then  $\frac{dy}{dx} =$  [Karnataka CET 2000]  
(a)  $\frac{-y}{x}$  (b)  $\frac{y}{x}$  (c)  $\frac{-x}{y}$  (d)  $\frac{x}{y}$   
Solution: (c)  $x = \frac{1-t^2}{1+t^2}$  and  $y = \frac{2t}{1+t^2}$ 

Differentiating both the equations, we get  $\frac{dx}{d\theta} = -2\sin 2\theta$  and  $\frac{dy}{d\theta} = 2\cos 2\theta$ .

Therefore 
$$\frac{dy}{dx} = -\frac{\cos 2\theta}{\sin 2\theta} = -\frac{x}{y}$$
.

(4)**Differentiation of infinite series :** If *y* is given in the form of infinite series of *x* and we have to find out  $\frac{dy}{dx}$  then we remove one or more terms, it does not affect the series

CLICK HERE

(i) If 
$$y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$$
, then  $y = \sqrt{f(x) + y} \Rightarrow y^2 = f(x) + y$   
$$2y \frac{dy}{dx} = f'(x) + \frac{dy}{dx}, \quad \therefore \quad \frac{dy}{dx} = \frac{f'(x)}{2y - 1}$$

Get More Learning Materials Here : 💶

(ii) If 
$$y = f(x)^{f(x)^{f(x)^{p(x)}}}$$
 then  $y = f(x)^{y}$   
 $\therefore \log y = y \log f(x)$   
 $\frac{1}{y} \frac{dy}{dx} = \frac{y \cdot f'(x)}{f(x)} + \log f(x) \cdot \frac{dy}{dx} + \frac{dy}{dx} = \frac{y^2 f'(x)}{f(x)[1 - y \log f(x)]}$   
(iii) If  $y = f(x) + \frac{1}{f(x) + \frac{1}{f(x) + \dots \infty}}$  then  $\frac{dy}{dx} = \frac{yf'(x)}{2y - f(x)}$   
Example: 29 If  $y = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \dots \dots 10^{\infty}}}}$  then  $\frac{dy}{dx} =$  [Rajasthan PET 2002]  
(a)  $\frac{x}{2y - 1}$  (b)  $\frac{2}{2y - 1}$  (c)  $\frac{-1}{2y - 1}$  (d)  $\frac{1}{2y - 1}$   
Solution: (d)  $y = \sqrt{x + \sqrt{x + \sqrt{x + (x + \dots \dots 10^{\infty})}}}$   $\Rightarrow y = \sqrt{x + y} \Rightarrow y^2 = x + y \Rightarrow 2y \frac{dy}{dx} = 1 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} (2y - 1) = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{2y - 1}$   
Example: 30 If  $y = x^{x - \infty}$ , then  $x(1 - y \log_x x) \frac{dy}{dx}$  is [DCE 2000]  
(a)  $x^2$  (b)  $y^2$  (c)  $xy^2$  (d) None of these  
Solution: (b)  $y = x^{x^{1 - \infty}} \Rightarrow y = x^{x} \Rightarrow \log_x y = y \log_x x \Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{y}{x} + \log_x x \frac{dy}{dx} \Rightarrow \left(\frac{1}{y} - \log_x x\right) \frac{dy}{dx} = \frac{y}{x} \Rightarrow x(1 - y \log_x x) \frac{dy}{dx} = y^2$   
Example: 31 If  $y = x^4 + \frac{1}{x^2 +$ 

(5) **Differentiation of composite function :** Suppose function is given in form of fog(x) or f[g(x)]

CLICK HERE

**》** 

🕀 www.studentbro.in

Get More Learning Materials Here : 💶

Working rule : Differentiate applying chain rule  $\frac{d}{dx}f[g(x)] = f'[g(x)]g'(x)$ If f(x) = |x-2| and g(x) = f(f(x)), then for x > 20, g'(x) equals Example: 33 (a) -1 (b) 1 (d) None of these (c) 0 Solution: (b) For x > 20, we have f(x) = |x-2| = x-2 and, g(x) = f(f(x)) = f(x-2) = x-2-2 = x-4 $\therefore g'(x) = 1$ If g is inverse of f and  $f'(x) = \frac{1}{1 + x^n}$ , then g'(x) equals Example: 34 (b)  $1 + [f(x)]^n$ (a)  $1 + x^n$ (c)  $1 + [g(x)]^n$ (d) None of these **Solution:** (c) Since *q* is inverse of *f*. Therefore, fog(x) = x for all  $x \Rightarrow \frac{d}{dx} \{fog(x)\} = 1$  for all x $\Rightarrow f'(g(x)).g'(x) = 1 \Rightarrow f'\{g(x)\} = \frac{1}{g'(x)} \Rightarrow \frac{1}{1 + [g(x)]^n} = \frac{1}{g'(x)} \qquad \left[ \because f'(x) = \frac{1}{1 + x^n} \right]$  $\Rightarrow g'(x) = 1 + [g(x)]^n$ 

#### 3.6 Differentiation of a Function with Respect to Another Function

In this section we will discuss derivative of a function with respect to another function. Let u = f(x) and v = g(x) be two functions of x. Then, to find the derivative of f(x) w.r.t. g(x) i.e., to find  $\frac{du}{dy}$  we use the following formula  $\frac{du}{dy} = \frac{du/dx}{dy/dx}$ 

Thus, to find the derivative of f(x) w.r.t. q(x) we first differentiate both w.r.t. x and then divide the derivative of f(x) w.r.t. x by the derivative of g(x) w.r.t. x.

The differential coefficient of  $\tan^{-1} \frac{2x}{1-x^2}$  w.r.t.  $\sin^{-1} \frac{2x}{1+x^2}$  is Example: 35

(b) -1

[Roorkee 1966; BIT Mesra 1996; Karnataka CET 1994; MP PET 1999; UPSEAT

1999, 2001]

(c) 0

(a) 1

**Solution:** (a) Let  $y_1 = \tan^{-1} \frac{2x}{1-x^2}$  and  $y_2 = \sin^{-1} \frac{2x}{1+x^2}$ Putting  $x = \tan \theta$  $\therefore$   $y_1 = \tan^{-1} \tan 2\theta = 2\theta = 2 \tan^{-1} x$  and  $y_2 = \sin^{-1} \sin 2\theta = 2 \tan^{-1} x$ Again  $\frac{dy_1}{dx} = \frac{d}{dx} [2 \tan^{-1} x] = \frac{2}{1 + x^2}$ .....(i)

and 
$$\frac{dy_2}{dx} = \frac{d}{dx} [2 \tan^{-1} x] = \frac{2}{1 + x^2}$$
 .....(ii)  
Hence  $\frac{dy_1}{dy_2} = 1$ 

**Example: 36** The first derivative of the function  $\left| \cos^{-1} \left( \sin \frac{\sqrt{1+x}}{2} \right) + x^x \right|$  with respect to x at x = 1 is

Get More Learning Materials Here :



### 🕀 www.studentbro.in

(d) None of these

(a) 
$$\frac{3}{4}$$
 (b) 0 (c)  $\frac{1}{2}$  (d)  $-\frac{1}{2}$   
Solution: (a)  $f(x) = \cos^{-1} \left[ \cos \left( \frac{\pi}{2} - \sqrt{\frac{1+x}{2}} \right) \right] + x^x = \frac{\pi}{2} - \sqrt{\frac{1+x}{2}} + x^x$   
 $\therefore f'(x) = -\frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{1+x}} + x^x (1 + \log x) \Rightarrow f'(1) = -\frac{1}{4} + 1 = \frac{3}{4}$ 

#### **3.7 Successive Differentiation or Higher Order Derivatives**

(1) **Definition and notation :** If y is a function of x and is differentiable with respect to x, then its derivative  $\frac{dy}{dx}$  can be found which is known as derivative of first order. If the first derivative  $\frac{dy}{dx}$  is also a differentiable. function, then it can be further differentiated with respect to x and this derivative is denoted by  $\frac{d^2y}{dx^2}$  which is called the second derivative of y with respect to x further if  $\frac{d^2y}{dx^2}$  is also differentiable then its derivative is called third derivative of y which is denoted by  $\frac{d^3y}{dx^3}$ . Similarly  $n^{\text{th}}$  derivative of y is denoted by  $\frac{d^ny}{dx^n}$ . All these derivatives are called as successive derivative and this process is known as successive differentiation. We also use the following symbols for the successive derivatives of y = f(x):

$$y_{1}, y_{2}, y_{3}, \dots, y_{n}, \dots,$$

 $f'(x), f''(x), f''(x), \dots, f^n(x), \dots$ If y = f(x), then the value of the  $n^{\text{th}}$  order derivative at x = a is usually denoted by  $\left(\frac{d^n y}{dx^n}\right)_{x=a} \text{ or } (y_n)_{x=a} \text{ or } (y^n)_{x=a} \text{ or } f^n(a)$ 

(2) $n^{\text{th}}$  Derivatives of some standard functions :

(i) (a) 
$$\frac{d^n}{dx^n}\sin(ax+b) = a^n\sin\left(\frac{n\pi}{2} + ax + b\right)$$
 (b)  $\frac{d^n}{dx^n}\cos(ax+b) = a^n\cos\left(\frac{n\pi}{2} + ax + b\right)$ 

(ii) 
$$\frac{d^n}{dx^n}(ax+b)^m = \frac{m!}{(m-n)!}a^n(ax+b)^{m-n}$$
, where  $m > n$ 

**Particular cases :** 

(i) (a) When m = n

(ii) When 
$$a = 1, b = 0$$
, then  $y =$ 

$$D^{n}\{(ax+b)^{n}\} = a^{n}.n! \qquad \therefore D^{n}(x^{m}) = m(m-1)....(m-n+1)x^{m-n} = \frac{m!}{(m-n)!}x^{m-n}$$

(b) When 
$$m < n, D^n \{(ax+b)^m\} = 0$$

(iii) When 
$$a = 1, b = 0$$
 and  $m = n$ , (iv) When  $m = -1, y = \frac{1}{(ax + b)^2}$ 

Get More Learning Materials Here : 📕



### 🕀 www.studentbro.in

 $x^n$ 

Regional www.studentbro.in

then 
$$y = x^n$$
  
 $\therefore D^n(x^n) = n!$   
(3)  $\frac{d^n}{dx^n} \log(ax + b) = \frac{(-1)^{n-1}(n-1)!a^n}{(ax + b)^n}$   
(5)  $\frac{d^n(a^x)}{dx^n} = a^x (\log a)^n$   
(6) (1)  $\frac{d^n}{dx^n} e^{ax} \sin(bx + c) = r^n e^{ax} \sin(bx + c + n\phi)$   
where  $r = \sqrt{a^2 + b^2}; \phi = \tan^{-1} \frac{b}{a},$ 

 $y = e^{ax} \sin(bx + c)$ 

(ii) 
$$\frac{d^n}{dx^n}e^{ax}\cos(bx+c) = r^n e^{ax}\cos(bx+c+n\phi)$$

Example: 37 If 
$$y = \left(x + \sqrt{1 + x^2}\right)^n$$
, then  $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$  is [AIEEE 2002]  
(a)  $n^2 y$  (b)  $-n^2 y$  (c)  $-y$  (d)  $2x^2 y$   
Solution: (a)  $y = (x + \sqrt{1 + x^2})^x \Rightarrow \frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \left(1 + \frac{x}{\sqrt{1 + x^2}}\right) \Rightarrow \frac{dy}{dx} = \frac{n(x + \sqrt{1 + x^2})^x}{\sqrt{1 + x^2}} \Rightarrow (\sqrt{1 + x^2}) \frac{dy}{dx} = n\left(x + \sqrt{1 + x^2}\right)^n$   
 $\Rightarrow \frac{d^2y}{dx^2}, \sqrt{1 + x^2} + \frac{dy}{dx} \left(\frac{x}{\sqrt{1 + x^2}}\right) = n^2 \left(x + \sqrt{1 + x^2}\right)^{n-1} \left(1 + \frac{x}{\sqrt{1 + x^2}}\right)$   
 $\Rightarrow (1 + x^2), \frac{d^2y}{dx^2} + x, \frac{dy}{dx} = n^2(x + \sqrt{1 + x^2})^n \Rightarrow (1 + x^2) \frac{d^2y}{dx^2} + x, \frac{dy}{dx} = n^2 y$ .  
Example: 38 If  $f(x) = x^n$ , then the value of  $f(1) - \frac{f'(1)}{1!} + \frac{f'(1)}{2!} - \frac{f''(1)}{3!} + \dots + \frac{(-1)^n f''(1)}{n!}$  is [AIEEE 2003]  
(a)  $2^n$  (b)  $2^{n-1}$  (c) 0 (d) 1  
Solution: (c)  $f(x) = x^n \Rightarrow f(1) = 1, \quad f(x) = nx^{n-1} \Rightarrow f'(1) = n$   
 $f'(x) = n(n-1)x^{n-2} \Rightarrow f'(1) = n(n-1) \dots$   
 $f''(x) = n(n-1)x^{n-2} \Rightarrow f'(1) = n(n-1) \dots$   
 $f''(x) = n(n-1)x^{n-2} \Rightarrow f'(1) = n(n-1) \dots$   
(a)  $1 = \frac{1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots + (-1)^n \frac{n!}{n!} = n^2 C_0 - n^2 C_1 + n^2 C_2 - n^2 C_3 + \dots + (-1)^n n^n C_n = 0$ .  
Example: 39 If  $f(x) = \tan^{-1}\left\{\frac{\log(e)}{(x^2)}\right\} + \tan^{-1}\left(\frac{3 + 2\log x}{1 - 6\log x}\right)$ , then  $\frac{d^3y}{dx^n}$  is  $(n \ge 1)$   
(a)  $\tan^{-1}(\log x^n)$  (b) 0 (c)  $1/2$  (d) None of these  
Solution: (b) We have  $y = \tan^{-1}\left(\frac{\log e - \log x^2}{\log e + \log x^2}\right) + \tan^{-1}\left(\frac{3 + 2\log x}{1 - 6\log x}\right) = \tan^{-1}\left(\frac{1 - 2\log x}{1 + 2\log x}\right) + \tan^{-1}\left(\frac{3 + 2\log x}{1 - 6\log x}\right)$   
 $= \tan^{-1} 1 - \tan^{-1}(2\log x) + \tan^{-1} 3 + \tan^{-1}(2\log x) \Rightarrow y = \tan^{-1} 1 + \tan^{-1} 3 \Rightarrow \frac{dy}{dx} = 0 \Rightarrow \frac{d^n y}{dx^n} = 0$ .  
Example: 40 If  $f(x) = (\cos x + i \sin x)(\cos 3x + i \sin 3x)\dots$  ( $\cos(2n - 1)x + i \sin(2n - 1)x$ ), then  $f'(x)$  is equal to

CLICK HERE

Get More Learning Materials Here : 📕

(a) 
$$n^2 f(x)$$
 (b)  $-n^4 f(x)$  (c)  $-n^2 f(x)$  (d)  $n^4 f(x)$   
Solution: (b) We have,  $f(x) = \cos(x + 3x + .... + (2n-1)x) + i\sin(x + 3x + 5x + .... + (2n-1)x) = \cos n^2 x + i\sin n^2 x$   
 $\Rightarrow f'(x) = -n^2(\sin n^2 x) + n^2(i\cos n^2 x) \Rightarrow f''(x) = -n^4\cos n^2 x - n^4i\sin n^2 x$   
 $\Rightarrow f''(x) = -n^4(\cos n^2 x + i\sin n^2 x) \Rightarrow f''(x) = -n^4f(x)$ 

#### 3.8 *n*<sup>th</sup> Derivative using Partial fractions

For finding  $n^{\text{th}}$  derivative of fractional expressions whose numerator and denominator are rational algebraic expression, firstly we resolve them into partial fractions and then we find  $n^{\text{th}}$  derivative by using the formula giving the  $n^{\text{th}}$  derivative of  $\frac{1}{ax+b}$ .

Example: 41 If  $y = \frac{x^4}{x^2 - 3x + 2}$ , then for n > 2 the value of  $y_n$  is equal to (a)  $(-1)^n n! [16(x-2)^{-n-1} - (x-1)^{-n-1}]$  (b)  $(-1)^n n! [16(x-2)^{-n-1} + (x-1)^{-n-1}]$ (c)  $n! [16(x-2)^{-n-1} + (x-1)^{-n-1}]$  (d) None of these Solution: (a)  $y = \frac{x^4}{x^2 - 3x + 2} = x^2 + 3x + 7 + \frac{15x - 14}{(x-1)(x-2)} = x^2 + 3x + 7 - \frac{1}{(x-1)} + \frac{16}{(x-2)}$   $\therefore y_n = D^n (x^2) + D^n (3x) + D^n (7) - D^n [(x-1)^{-1}] + 16D^n [(x-2)^{-1}]$  $= (-1)^n n! [-(x-1)^{-n-1} + 16(x-2)^{-n-1}] = (-1)^n n! [16(x-2)^{-n-1} - (x-1)^{-n-1}].$ 

#### 3.9 Differentiation of Determinants

Let 
$$\Delta(x) = \begin{vmatrix} a_1(x) & b_1(x) \\ a_2(x) & b_2(x) \end{vmatrix}$$
. Then  $\Delta'(x) = \begin{vmatrix} a'_1(x) & b'_1(x) \\ a_2(x) & b_2(x) \end{vmatrix} + \begin{vmatrix} a_1(x) & b_1(x) \\ a'_2(x) & b'_2(x) \end{vmatrix}$   
If we write  $\Delta(x) = |C_1 C_2 C_3|$ . Then  $\Delta'(x) = C_1 C_2 C_3| + |C_1 C_2 C_3| + |C_1 C_2 C_3|$   
Similarly, if  $\Delta(x) = \begin{vmatrix} R_1 \\ R_2 \\ R_3 \end{vmatrix}$ , then  $\Delta'(x) = \begin{vmatrix} R'_1 \\ R_2 \\ R_3 \end{vmatrix} + \begin{vmatrix} R_1 \\ R'_2 \\ R_3 \end{vmatrix} + \begin{vmatrix} R_1 \\ R'_2 \\ R'_3 \end{vmatrix}$ 

Thus, to differentiate a determinant, we differentiate one row (or column) at a time, keeping others unchanged.

**Example: 42** If  $f_r(x)$ ,  $g_r(x)$ ,  $h_r(x)$ , r = 1,2,3 are polynomials in x such that  $f_r(a) = g_r(a) = h_r(a)$ , r = 1,2,3 and

$$F(x) = \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix}, \text{ then find } F'(x) \text{ at } x = a$$
[IIT 1985]
(a) O
(b)  $f_{1}(a)g_{2}(a)h_{3}(a)$ 
(c) 1
(d) None of these
Solution: (a)  $F'(x) = \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix}$ 

CLICK HERE

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

🕀 www.studentbro.in

$$\therefore F'(a) = \begin{vmatrix} f_1'(a) & f_2'(a) & f_3'(a) \\ g_1(a) & g_2(a) & g_3(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1'(a) & g_2'(a) & g_3'(a) \\ h_1(a) & h_2(a) & h_3(a) \end{vmatrix} + \begin{vmatrix} f_1(a) & f_2(a) & f_3(a) \\ g_1'(a) & g_2'(a) & g_3(a) \\ h_1(a) & h_2'(a) & h_3'(a) \end{vmatrix}$$

$$= \cdot 0 + 0 + 0 = 0 \qquad [\because f_r(a) = g_r(a) = h_r(a), r = 1, 2, 3]$$
Example: 43 Let  $f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ 1 & p^2 & p^3 \end{vmatrix}$  where p is a constant. Then  $\frac{d^3}{dx^3}[f(x)]$  at  $x = 0$  is [IIT 1997]  
(a) p (b)  $p + p^2$  (c)  $p + p^3$  (d) Independent of p  
Solution: (d) Given  $f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ 6 & -1 & 0 \end{vmatrix}$ ,  $2^{nd}$  and  $3^{rd}$  rows are constant, so only  $1^{st}$  row will take part in

**Solution:** (d) Given  $f(x) = \begin{vmatrix} 6 & -1 & 0 \\ 1 & p^2 & p^3 \end{vmatrix}$ ,  $2^{na}$  and  $3^{ra}$  rows are constant, so only  $1^{st}$  row will take part in

differentiation

$$\therefore \frac{d^3}{dx^3} f(x) = \begin{vmatrix} \frac{d^3}{dx^3} x^3 & \frac{d^3}{dx^3} \sin x & \frac{d^3}{dx^3} \cos x \\ 6 & -1 & 0 \\ 1 & p^2 & p^3 \end{vmatrix}$$

We know that 
$$\frac{d^n}{dx^n} x^n = n!$$
,  $\frac{d^n}{dx^n} \sin x = \sin(x + \frac{n\pi}{2})$  and  $\frac{d^n}{dx^n} \cos x = \cos(x + \frac{n\pi}{2})$   
Using these results,  $\frac{d^3}{dx^3} f(x) = \begin{vmatrix} 3! & \sin\left(x + \frac{3\pi}{2}\right) & \cos\left(x + \frac{3\pi}{2}\right) \\ 6 & -1 & 0 \\ 1 & p^2 & p^3 \end{vmatrix}$ 

$$\frac{d^3}{dx^3} f(x)\Big|_{\text{at }x=0} = \begin{vmatrix} 6 & -1 & 0 \\ 6 & -1 & 0 \\ 1 & p^2 & p^3 \end{vmatrix} = 0 \text{ i.e., independent of } p.$$

## 3.10 Differentiation of Integral Function

If  $g_1(x)$  and  $g_2(x)$  both functions are defined on [a, b] and differentiable at a point  $x \in (a, b)$  and f(t) is continuous for  $g_1(a) \le f(t) \le g_2(b)$ 

Then 
$$\frac{d}{dx} \int_{g_1(x)}^{g_2(x)} f(t) dt = f[g_2(x)]g'_2(x) - f[g_1(x)]g'_1(x) = f[g_2(x)]\frac{d}{dx}g_2(x) - f[g_1(x)]\frac{d}{dx}g_1(x).$$
  
Example: 44 If  $F(x) = \int_{x^2}^{x^3} \log t \, dt \, (x > 0)$ , then  $F'(x) =$  [MP PET 2001]  
(a)  $(9x^2 - 4x)\log x$  (b)  $(4x - 9x^2)\log x$  (c)  $(9x^2 + 4x)\log x$  (d) None of these  
Solution: (a) Applying formula we get  $F'(x) = (\log x^3)3x^2 - (\log x^2)2x$   
 $= (3\log x)3x^2 - 2x(2\log x) = 9x^2\log x - 4x\log x = (9x^2 - 4x)\log x.$   
Example: 45 If  $x = \int_0^y \frac{1}{\sqrt{1 + 4t^2}} dt$ , then  $\frac{d^2y}{dx^2}$  is

**CLICK HERE** 

»

Get More Learning Materials Here : 💶

|               | (a) 2 <i>y</i>                                                     | (b) 4 <i>y</i>                                                                  | (c) 8 <i>y</i>                                                                          | (d) 6 y                                                           |
|---------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Solution: (b) | $x = \int_0^y \frac{1}{\sqrt{1+4t^2}} dt \implies \frac{dx}{dy} =$ | $\frac{1}{\sqrt{1+4y^2}} \Rightarrow \frac{dy}{dx} = \sqrt{1+4y^2} \Rightarrow$ | $\frac{d^2y}{dx^2} = \frac{4y}{\sqrt{1+4y^2}} \frac{dy}{dx} \implies \frac{d^2y}{dx^2}$ | $\frac{y}{2} = \frac{4y}{\sqrt{1+4y^2}} \cdot \sqrt{1+4y^2} = 4y$ |

#### 3.11 Leibnitz's Theorem

G.W. Leibnitz, a German mathematician gave a method for evaluating the nth differential coefficient of the product of two functions. This method is known as Leibnitz's theorem.

**Statement of the theorem –** If *u* and *v* are two functions of *x* such that their nth derivative exist then  $D^n(u.v.) = {}^nC_0(D^nu)v + {}^nC_1D^{n-1}u.Dv + {}^nC_2D^{n-2}u.D^2v + \dots + {}^nC_rD^{n-r}u.D^rv + \dots + u.(D^nv).$ 

**Note**: **D** The success in finding the *n*th derivative by this theorem lies in the proper selection of first and second function. Here first function should be selected whose *n*th derivative can be found by standard formulae. Second function should be such that on successive differentiation, at some stage, it becomes zero so that we need not to write further terms.

**Example: 46** If 
$$y = x^2 e^x$$
, then value of  $y_n$  is

(a) 
$$\{x^2 - 2nx + n(n-1)\}e^x$$
 (b)  $\{x^2 + 2nx + n(n-1)\}e^x$ 

(c) 
$$\{x^2 + 2nx - n(n-1)\}e^x$$
 (d) None of these

**Solution:** (b) Applying Leibnitz's theorem by taking  $x^2$  as second function. We get,  $D^n y = D^n (e^x . x^2)$ 

$$= {}^{n}C_{0}D^{n}(e^{x})x^{2} + {}^{n}C_{1}D^{n-1}(e^{x}).D(x^{2}) + {}^{n}C_{2}D^{n-2}(e^{x}).D^{2}(x^{2}) + \dots = e^{x}.x^{2} + ne^{x}.2x + \frac{n(n-1)}{2!}e^{x}.2 + 0 + 0 + \dots$$

$$y_n = \{x^2 + 2nx + n(n-1)\}e^x$$
.

**Example: 47** If  $y = x^2 \log x$ , then value of  $y_n$  is

(a) 
$$\frac{(-1)^{n-1}(n-3)!}{x^{n-2}}$$
 (b)  $\frac{(-1)^{n-1}(n-3)!}{x^{n-2}}.2$  (c)  $\frac{(-1)^{n-1}(n-2)!}{x^{n-2}}$  (d) None of these

**Solution:** (b) Applying Leibnitz's theorem by taking  $x^2$  as second function, we get,  $D^n y = D^n (\log x \cdot x^2)$ 

$$= {}^{n}C_{0}D^{n}(\log x).x^{2} + {}^{n}C_{1}D^{n-1}(\log x).D(x^{2}) + {}^{n}C_{2}D^{n-2}(\log x)D^{2}(x^{2}) + \dots \dots$$

$$= \frac{(-1)^{n} (n-1)!}{x^{n}} \cdot x^{2} + n \cdot \frac{(-1)^{n} (n-2)!}{x^{n-1}} \cdot 2x + \frac{n(n-1)}{2!} \frac{(-1)^{n} (n-3)!}{x^{n-2}} \cdot 2 + 0 + 0 \dots \dots$$
$$= \frac{(-1)^{n-1} (n-1)!}{x^{n-2}} + \frac{2n(-1)^{n-2} (n-2)!}{x^{n-2}} + \frac{n(n-1)(-1)^{n-3} (n-3)!}{x^{n-2}}$$
$$= \frac{(-1)^{n-1} (n-3)!}{x^{n-2}} \times \{(n-1)(n-2) - 2n(n-2) + n(n-1)\} = \cdot \frac{(-1)^{n-1} (n-3)!}{x^{n-2}} \cdot 2$$

Get More Learning Materials Here :



